
Theor Chim Acta (1991) 79:53-63 Theoretica 
Chimica Acta 
© Springer-Verlag 1991 

The evaluation of matrix elements for non-canonical Weyl 
tableau basis states adapted to U(n I + n2) ~ U(nl) x U(n2) 
II. Explicit formulae for the matrix elements 

Hai-Lun Lin 
Theoretical Chemistry, University of Siegen, D-5900 Siegen, Federal Republic of Germany 
Department of Chemistry, East China Normal University, Shanghai 200062, People's Republic of 
China 

Received June 1, 1990; received in revised form September 17, 1990/Accepted September 21, 1990 

Summary. In this second paper, we offer a new insight and much simpler 
expressions for matrix elements in terms of non-canonical Weyl tableau basis 
functions adapted to subgroup chain U(nl + n2) = U(nx) × U(n2). The matrix 
elements can be expressed through the product of U(nl + 1) and U(n2 + l) 
matrix elements times a factor A, so it is a "global" rather than a "segment 
value". 
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I. Introduction 

The unitary-group approach (UGA) represents not only the simplest but also the 
most efficient procedure for CI (configuration interaction) problems in many- 
electron systems. It is based on earlier developments in the nuclear many-body 
problem, and on representation theory of compact Lie groups due to Moshinsky 
[1], Gelfand and Tsetlin [2], Nagel and Moshinsky [3], Baird and Biedenharn [4], 
Louck and Galbraith [5] and others. 

The UGA to CI problems exploits the fact that the spin-independent many- 
electron Hamiltonian may be expressed as a bilinear form of the U(n) generators. 
Hence, the CI matrix elements can be evaluated as linear combinations of the 
appropriate orbital integrals, where the coefficients are given in terms of the 
matrix elements of the U(n) generators and their products between the canonical 
Gelfand bases. 

However, in spite of the simplicity of the unitary group approach in principle, 
the explicit expressions of the generator matrix elements in Gelfand bases are 
rather complex and, if applied directly, might result in a rather inefficient 
computational scheme. Therefore, for the purpose of simple many-electron 
problems, Paldus [6] and Shavitt [7] have presented an effective and elegant 
simplified formalism based on the Paldus array. They showed that, although for 
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an arbitrary column irreducible representation of U(n) the questions of basis 
generation and generator matrix element evaluation are rather complex, there is 
a simple and compact solution of both of these problems for two-column 
irreducible representations, and the graphical unitary group approach (GUGA) 
results. 

Recently, we have presented a Weyl type graphical method [8] for evaluating 
the matrix elements of U(n) generators as well as products of generators, which 
is an extension of Harter's jawbone counting formula for elementary generators 
Ee,;_ 1 [9]. Later, by considering the transformation properties of the generators 
of U(2n) and applying the Wigner-Eckart theorem repeatedly, we presented 
simple closed expressions for the generator matrix elements of U(2n) in a 
non-canonical Weyl tableau bases, symmetry adapted to the group chain 
U(2n) ~ U(2) x U(n) [10]. These expressions are required for CI dealing with 
spin-orbit coupling. Another non-canonical group chain that is also important in 
the CI problem, is 

U(n) ~ U(nO x U(n2), n = n 1 + n 2. (1) 

Recently, a complete derivation of the U(n) generator matrix elements in the 
non-canonical bases adapted to the group chain (1) was presented by Gould and 
Paldus [11] from the viewpoint of the Green-Gould characteristic identities for 
GL(n) [12] .  They obtained the expressions for the fundamental 
U(n): U(nl) x U(n2) reduced Wigner coefficients and matrix elements. Paldus et 
al. [13] dealt with the same many-electron system partitioning in a Clifford 
algebra unitary group approach by several different methods, namely the permu- 
tation-orthogonalization method, the U(n) Clebsch-Gordan coefficient method, 
and the linear algebraic equation method. A special case of partitioning is also 
employed in the particle-hole formalism, which was examined by Paldus and 
Boyle [ 14]. 

It is our aim in this paper to derive the detailed formulae of the generator 
matrix elements in the Weyl tableau bases adapted to the group chain (1). This 
derivation offers a new and useful viewpoint and gives flexibility to the formal- 
ism. The non-trivial case is given by the product of U(nl + 1) and U(n 2 Jr-1) 
matrix elements times a factor A. So it is "global" rather than a "segment 
values" solution. It is worthwhile to point out that the factor A is somewhat 
similar to the "coupling segment value" of [ 11] and the "link segment" of the 
p - h  formalism in [14], and essentially represents a SU(2) 6 - j  symbol. In the 
previous paper of this series [ 15], explicit formulae for the subduction coefficients 
have been derived from which the final results will now be obtained. 

2. Fundamentals 

It is well known that the U(n) generator matrix elements in the non-canonical 
Weyl tableau bases can be evaluated from those in the canonical Weyl tableau 
bases. The transformation reads: 

[v]; [vl] [Ville I[v]; [v,] EVil\ 
I u I w,,w  / 

w,l,v,\W" I W~lWr2 / \ W I W1W2 / \W" I 
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The term on the left-hand side is the matrix element for the non-canonical Weyl 
tableau bases, the last term on the right-hand side is the matrix element in 
canonical Weyl tableau bases, and the first two terms are the subduction 
coefficients between the non-canonical and canonical Weyl tableau bases. 
Throughout we adopt the same notation as in [ 15]. 

Because of  the Hermiticity relation, 

E~ = E;;, (3) 

so we may confine our discussion to the lowering generators E u with i > j .  
By considering the transformation properties of the U(n) generators with 
respect to the subgroup imbedding of group chain (1), we obtain the following 
relations. 

(a) In the first case of 1 ~< i , j  ~ nl, the generators E u are just the generators of 
subgroup U(nl) and we have 

V' V' /[V]; [ 1][ 2] E [V]')[Vl][V2] ~ ~..~./[V~] E.. [Vl]~/[V#2]i[V2]~ 
\ w'~, w'~ 'j w,, w2 / \w~ I ' ; I w , / \ W i l W = /  

= - / [v~] lE . .  [v~]'k, ~.~ ~,~v~ .~,~,~ ~.  (4) 
\ w ; I  " l W , /  " ' 

(b) For the other special case, nl + 1 ~< i , j  ~ n = nl + n2, we have 

V' V" [g]; [ 1][ 2][g [g]; [V1] [m2]~ =/ [g l ]  [gl] ~ /IVallE ItV~J\ 
w ~ , w i [  'Jl w~, rv~/  \ rv~ W l / \ W l l  '~]w~/ 

[vi] _ l i v d \  
= ( wl  ~;j w~/ ; '~v~ ,~ , '~ ,~ '~ , ' ,"  (5) 

(c) The non-trivial cases are those where i, j refer to orbitals of different 
subgroups. In the case of the lowering generators, i belongs to the subgroup 
U(n2) and j to U(nl), namely, 

n l + l ~ i ~ n l + n 2 = n  

1 ~<j ~< nl. 

In such cases, the generators E u transform as the tensor operators of contragra- 
dient vector operators of U(n~) and vector operators of U(n2). If  [Vl] x IV2] 
denotes the irreducible representations of U(nl) x U(n2), and the explicit labels 
[2~ p), 2~2 p)] are introduced instead of [Vp], where 2~q p) is the number of boxes in 
the qth column of the Young diagram [Vp], then all the four shifting effects are 
as follows: 

1) 

2) 

3) 

[ , l f ) -  1, ,V2q × [,q~), ,l~ ~) + 1] 
(6) 

4) [2(~ 1), 2(21) -- l] x tr2(2)l ,2(2)2 + 1]. 
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Applying the U(n~) x U(n2) Wigner-Eckart theorem to the non-canonical 
matrix elements, we may write 

[vl] [vi] _ I[Vl; 
[v]; w~, wl ~'j 

IV1] [v:],~ 
w,, W~ l 

I[Vm_ iv, l\/[v j I 
=<[vl;[V;l,[VilllEll[vl;[v,l,[v~l> \ w; s, w, I \ w; I i;[V2]\ (7) 

W:I' 

where the first term on the right-hand side is the U(n~) x U(n2) reduced matrix 
element, being dependent only on the Young diagrams of IV], [V]], [V~], [Vd 
and [V2], the second term is a U(n~) contragradient vector coupling coefficient, 
and the third term is a U(n2) vector coupling coefficient with f and i being the 
corresponding unit bases in terms of Weyl tableau bases. 

Now, in order to eliminate the reduced matrix elements in Eq. (7), we 
consider the non-canonical matrix element of a pertinent generator Ek~ where l is 
in the range (1, nl) and k in the range (n, + 1, n~ + n2). If the indices k, I are 
chosen appropriately (see Sect. 3) the following relation can be exploited 

[V]; [Vl] IV;] [V]; [Vii IV2] \ G, wi.., w~. w,,., W:m / 

/[v;l r. [v,, ) /[v;l k, Ev21) 
=<[VI;[V'II'[VilIIEIliVI;[V1]'[GI) \W'lmI'WI,. \ w ; .  W2m (8) 

where I W'I,, ), I W'2m ), [W,m ) and I W2,, ) are the corresponding Weyl tableau 
bases, which yield non-trivial results. Combining Eqs. (7) and (8), we obtain the 
following equation: 

I ' V IV]; [Vii [V2] E.. [ ]; [V1] [V2]~ 
Wl, W; tJ Wl, W 2 / 

: \  i W,m, W2mI\W'1J'w,I\W;I"w / 
r / [ v i i  i~ IV1] ~/[v,~] k, IV2] ~~ q- 

x L \w;,.I ' W, m l  \ W ; . I  > W~ml l 
(9) 

Using the property of E n l . t _ l ,  r (r = 1, 2 , . . .  ,hi) forming a contragradient 
vector operator of U(nl), and Et,~ +-2+ ~ (t = nl + 1, nl + 2 . . . . .  ni + n2) form- 
ing a vector operator of U(n2), we apply the Wigner-Eckart theorem again and 
obtain 

[v]; [vl] [vl] I~,j [v]; [v,] [v21~ 
wl, w; w,, w2 / 

/tr.,.+,l I Evo,+,l\/tro s,l I Lro +,l\ 
\ w', w, / \  wi I w~ / 
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where 

A = I[V]; [V~]Wlm, [V2]wZ2rn Ekll[V]', [V1]Wlm, [V2]/W2m 
[ /[Vnl iq~ 1] [Vnl + l] t / [ Vn 2/+. 1] [Vn2+ 1]\ ] -1 

k Wim Wire \ W2m ] W2m / 

= M r  "[MI " / 2 ]  -1. (11) 

In Eqs. (10-11), the selection of  the irreducible representations [Vnl + 1] of 
U(n~ + 1) and [V.2 + t] of U(n2 + 1) should satisfy the following decomposition 
conditions: 

[Vn, + l] zD [V1] 
[vnl+,] = [v l ]  
[V.2+ 1] = [V2] (12) 

[V.~+ 1] = [V~]. 

It is obvious that the [V.~+ ~] and [V.~+~] satisfying Eq. (12) are not unique. We 
now make a special choice for the four cases of  different shifts using the criterion 
of  maximum symmetry in the final formulae 

[If.,+,] =[Vi] + [I, I] 

[V.2+ 1] = IVY]. (13) 

3. Detailed derivation 

We now direct our attention to the remaining problem of how to obtain the 
value of  A in Eqs. (10-11). It should be noted that, for the definite choice of  Eq. 
(13), A depends only on [V], [F1] and [F2] for a given shift case. We consider the 
special shift of  [2~ 1), 2(2 ') - 1 ]  x [2~ 2) + l, 2(2 2)] as an example. According to Eq. 
(11), the calculation of  A is that of  three generator matrix elements, i.e. 

A = M r I ( M 1 M E ) .  (14) 

At first, we consider the simplest case, namely, 

[V l ]  -- [2~ '), 1] 

[v2] = [2?), o] 
[vl]  = [x?), o] (15) 

[v~] = [2?) + 1, 0]. 
By virtue of  the Lit t lewood-Richardson rule, we know that 

[v] = [21, &], 
where 21, 22 satisfy the following relations 

21 = ~q'I](1) T]bI~ ~(2) - -  AS 
).2 = 1 + As (16) 
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and 

As =0, 1,2 . . . . .  dz-1 for d, ~ d2 
(17) 

As =0, 1,2 . . . . .  d l -1  for d~ < d2. 

In Eq. (17), d~ refers to the axial distance between the last box of each column 
in [V~], that is 

d, = ,z~o _ ~ )  + 1. (18) 

Now, take 

t [vl] \, = 
Wi,~/ 

t [v~] \ = 
w'~,. i 

Ek l  ~" En  I + 1,n 1 

tt<'  , ~ 

;~;,) Iw"~l 

n~+l / 

. , + 2  ltn~\, = 
n,+3. lW~. I 

n~ +~]:)+ 1 

[~5~+ d = [z9 ) + ~, ~l 
Iv.:+ d = [~i:) + ~, 0]. 

2 

~9 ) 

n~+2 1 n~+3 
• ~ 

nl + ;t~ 2) + 1 

(19) 

(~o) 

(21) 

Substituting Eqs. (19-21) into Eq. (11) and using the method of [8], we obtain 

1[~'o,.+.,~1 [v.,÷,~\ ~ ,  
M,={ [V,] IE.,+,., [V,] )= (22) 

\ wb. t w,,. / ~ a , + ~  

ltV.=~al ltv.=+,a} 
v=={  Ivd ]~.,+,,.,+.~+,~ ~v~l ={-1) ~=-'. {2~) 

~ w~= I I w ~  

The most complicated step is the calculation of Mr, which depends on the 
different As. Combining Eqs. (2), (!1), (14) and (19-20), we finally obtain 

MT=( [V];[V]] IVY] ]En,+In,ffV];[V1] IV2] ) 
W ~ ,  W ~  ' W ~ ,  W ~  ~ 

= ~ M , / t v ~ t ~ t ~  /tv~lt~a t ~  k (24) 
w" w' . ~ w ~ l w ~ w ~ / . , '  w~w~ ~ W ~  I ~ ~ / ~ 

where 

~, Itv~ [E t [v]''~ 
= \ w ; . I  "'+"'t w.,h; (25) 
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In order to go a step further, three things should be pointed out: 

a) According to the selection rule for non-zero elementary generator matrix 
element in U(n) (see [8]), the Weyl tableau bases IWm) and [W~,) in the 
preceding equations must be the same except in one box, which is covered by n~ 
in [W m ) and by n 1 + 1 in [W~, ). Thus, there is a one to one correspondence 
relation between [Wm ) and [Win ), and furthermore, the desired [W~,) can be 
easily determined from ]W,n ). 
b) In our special case of Eqs. (19-20), the different box is the first box of the 
second column. 
c) M '  takes the value 1 which is independent of different As. 

M ' =  W~, 1,,, Win/  1. (26) 

(In the special case where 2~ 1) = nl, M~ will take the value 1, but M '  will take the 
value [ (dl+ 1)/dl] ~/z. Now, dl = n~, hence the formula of  A remains unchanged.) 

Thus, Eq. (24) simplifies to 

Y m \Win WlmWl2m As \Win WlmW2m As" 

Now, we evaluate Eq. (27) for the first several As by using the results of [ 15]. 
[ d : -  l \  

For As = 0, the summation includes just one, i.e. ~ 0 ), term and we obtain 

MT = {(dl+ d:)/[d:(d~ + 1)]} ~/:. 

For As= l, the summation will include ( d z - 1 )  1 terms and we obtain 

Mr = {2(d~ + d2 - 1)/[d2(dl + 1)]} ~/2. 

F o r A s = 2 , ( d 2 ; 1 )  termsareincludedandweobtain 

M r  = {3(dl + d2 - 2)/[d2(d1 + 1)]} 1/2. 

Then, induction yields the final result: 

MT = {(1 + As)(d~ + a2 - As)/[d2(d, + 1)]} '/2, (28) 

where the following identity has been used: 

a 2 - ( ~ - , )  1 j" a2- ~ -  2) 1 

E (dl + j ,  2)(d1 + j ,  3) | z . . ~  J2 =J, + 1 (d, +J2 - 4)(d~ + j :  5) J l  = 2  - -  ~ 

1 
X{°°'{jAs=jd~ I+I(MI-~-JAs--2As)(dl'-~jAs--2As--1)}'°'}} "31-1~(AS'O) 

( d ~  - A s  - 1) ! (d ,  + , t2  - 2 A s  - 1)!(,/2 - 1)! 
(28a) 

- ( d  2 - - A s  - -  1)!(d 1 - 1)! As!(d~ + d z -  As - 1)!" 

It should be noted that all the parameters d,. and As must'satisfy the selection 
rules of Eq. (17), otherwise, a negative integer factorial will appear. 
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Substituting Eqs. (22-23) and (28) into Eq. (14), we obtain 

A = ( - 1) a~- 1 / ( 1  + As)(d I + dE -- As) 
(29) 

d~ d2 

In the following, we extend the result of  Eq. (29) to more general cases• First 
we consider 

In this situation, as long 

1 

[V',] \ = 
W',m / 

[V1] = [/~1), 2(21)] 
(30) 

[v l ]  = [27), ,~(2, - 11. 

as we take 

2 

22 -- 
22 

21 

1 
2 

1 22--1 

/ 11 / 
2 2 

[ V ] ] \ =  22--1 22--1 (31) 
Wlm / 22 nl 

21 

where all the 2i refer to 2~ ~) and [ V n l + l  ] = [2~1)-~ - 1, 2(21)], then all the results 
obtained above retain the same form. 

Next, we consider the most general case 

IVy] = [27), ,~(2~)1 
[V~] = [2~ 2) + 1, 2(22)]• (32) 

Now, we take 

[v~] / = 
IW'2m 

and 

n 1 + 1 n~ + 1 \ 
• \ 

nl -}- 22 nl "~2\ 
nl + 2 2 +  1 / nl + 2 2 + 2  
nj + 2 2 + 3  

nl + 21 + 1 

[v2] \ = 
w~,./ 

n l + l  nl..+ 1 \  
• 

nl + 22 nl 2 2 \  
n 1 + 2 2 + 2  / n 1 + 2 2 + 3  

n ~ + 2 1 + l  

(33) 

[Vn2+ d = [2, + 1, 22] 
(34) 

Ek,= En,+~2+,..,. 

In Eqs. (33-34), all the 2i refer to 2~ 2). In this situation, the only thing which has 
changed is the value of M'  in Eq. (26)• Here, 

M t  : /[V] Enl+2(22'+l,nl [Z] w ~  w m /  = ( -  1)~2'" (35) \ 
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So, the final result for the general case of  [Vd and [V2] is 

1)XlZ)+d:_, / ( 1  + As)(d~ + d 2 - -  As) 
A ( 

d~ d2 
(36) 

1)ai2)/(1 + As)(d 1 + d 2 - As) ( 
dad2 

As to the other three cases of  shifts, the results can be obtained by a similar 
procedure, the final expressions are given in the next section. 

4. The  final express ions  

" V" [V1] [ V2 ] '%,k/ tvl;tVllt :lie Itv}; 
t # i j  w,,w21 I w, ,w2/ 

/ [<1+1]  [Vn l -+- 1 ] \ /[Vn2+t.1] [Vn2 q- 1] } 
=A t IV{] E,,,+,.., [VI] ) {  [Vd lee..,+,,=+1 [vd , (37) 

\ Wi W1 / \  w T I  w2 

[ V n  1 + 11 = [V]] --]- [1, 11 

[Vn2+ 1] ---" IV2]. 

For  the first shift case, [2~ ° - 1, 2(21)] × [2t 2) + 1, 2~2)]: 

1 ) # ) + ~ , / ( 4  - A s  - 1)(4 - A s )  
A ( (38) 

d~ d2 

A s = O ,  1 . . . . .  d l - 2 ,  dz>>.dl 

A s = 0 , 1  . . . .  , d 2 - 1  , d 2 < d  1 . 

For  the second shift case, [2{ 1) - 1, 2(2 °] x [2{ 2), 2(22) + 1]: 

1)~(22) ; ( d l  + d2 - As - 1) As 
A ( d l ~  (39) 

A s = 0 ,  1 . . . . .  d l - 1 ,  dz>~dl 

As = 0 ,  1 . . . . .  d 2 - 1 ,  d z < d , .  

r~(l) ~(1) _ 1] x [2~ 2) + 1, •2]: For  the third shift case, ,.o ~ ,-~2 

A = ( -  1) 412) ; ( d l  + d2 -- As)(1 + As) 
d~-~2 (40) 

As = 0 ,  1 . . . . .  d l - 1 ,  d2>/d 1 

A s = O ,  1 . . . .  , d 2 -  1, d z < d l .  
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For  the last shift case, [2~ ~), 2(21) - 1] × [2~ 2), 2~ 2) + 1]: 

A = ( - 1)~ :)+as ~ ( d ~  - As)(d2__d~- As  - 1) 

A s = 0 ,  1 . . . . .  d l - 1 ,  d 2 > d l  

As = 0 ,  1 . . . . .  d 2 - 2  , e 2 ~ a  1 . 

Finally, we give two examples  to illustrate these formulae.  
Example  (1), for  the third shift case, U(6) ~ U(3) × U(3), 

1 4 6 E62 [ 23] 1 2 4 6 / 
[23]; 3 @ 5  ; 3 ® 5  

6 /As= 1 

(41) 

(4 i21(i / ( d l  "F d 2 -  As)(1 + As) 1 
1)~t 2) ( ~/~2 E42 

/ ( 2 + 2 - 1 ) ( 1 + 1 )  1 2 1 

Example  (2) for  the last shift case, U(6) ~ U(3) × U(3), 

[2 4, 1];2 ® 5  1];2 3 ® 5  

3 6 3 6 a~= 1 

6 4 61 

1)z~22)+ ~ s / ( d l  - As)(d2 - As  - 1) ( -  
xl 

i 
1 3 

2 4 

× 3 

4 

1 

2 
E42 3 

4 

2 - 3  . ( - - l )  • -- = ~ .  
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